BitmapEffectSILT Class Reference

#include <bfxatom.h>

Inheritance diagram for BitmapEffectSILT:

BitmapEffectAtom BitmapEffectBase ListItem CCObject SimpleCCObject List of all members.

Public Member Functions

virtual BOOL Run ()
 Runs a transform!

Private Member Functions

 CC_DECLARE_DYNCREATE (BitmapEffectSILT)

Detailed Description

Definition at line 151 of file bfxatom.h.


Member Function Documentation

BitmapEffectSILT::CC_DECLARE_DYNCREATE BitmapEffectSILT   )  [private]
 

BOOL BitmapEffectSILT::Run  )  [virtual]
 

Runs a transform!

Author:
Alex_Bligh (Xara Group Ltd) <camelotdev@xara.com>
Date:
12/10/94
Parameters:
None [INPUTS]
None [OUTPUTS]
Returns:
TRUE if succeeded, FALSE if failed

Errors: ERROR2 if called when parameters aren't set up properly

See also:
-
It's obviously important to override this!

Reimplemented from BitmapEffectBase.

Definition at line 158 of file bfxatom.cpp.

00159 {
00160     KernelBitmap * Temp;
00161     INT32 Stage;
00162     double mDest,cDest,mAdd,cAdd,mCurrent,cCurrent;
00163     BfxALULUT * LUT;
00164     BfxALULUT * LUT2;
00165     BYTE CurrentZero, CurrentOne, AddZero, AddOne; // Byte values of areas of solid black and white
00166 
00167 #define Stages 8
00168 #define TestSize 5
00169 double Coefficient[Stages+1]=
00170 // {-0.0946028, -1.00875, -2.06186, 5.24511, 10.9885, -12.2837, -19.5609, 12.3327, 15.0588}; //straight butterworth
00171 //{-0.153367, -0.538629, 0.288733, 0.543937, -3.11505, -1.00089, 6.76564, 4.81082, 0.0150588}; //butterworth+end pt norm
00172 {-0.153426, -0.538158, 0.291086, 0.539231, -3.12917, -0.989594, 6.792, 4.80329, 0};//like above but real norm
00173 //{2.12494, 1.2666, -0.917123, -0.599367, -0.062313, -0.0511883, -0.447152, -0.294161, 0.};//sharpen
00174 double t;
00175 
00176 #if DEBUGSILT
00177 double TestVars[TestSize];
00178 double RealVars[TestSize];
00179 double ScaleVars[TestSize];
00180 BYTE TestByte[256];
00181 BYTE DestByte[256];
00182 INT32 v;
00183 #endif
00184 
00185 #if DEBUGSILT
00186     for (v=0; v<TestSize; v++) TestVars[v]=RealVars[v]=ScaleVars[v]=(((double)v) / (double)(TestSize-1));
00187 
00188     for (v=0; v<=255; v++) TestByte[v]=DestByte[v]=v;
00189 #endif
00190 
00191     t=0;
00192     
00193     for (Stage=0; Stage<=Stages; Stage++)
00194         t+=(Coefficient[Stage]);//= ((double)rand())/100.0-163.0);
00195     
00196     for (Stage=0; Stage<=Stages; Stage++) Coefficient[Stage]=Coefficient[Stage]*1.0/t;
00197     
00198 #if DEBUGSILT
00199     TRACEUSER( "Alex", _T("Coefficients "));
00200     for (Stage=0; Stage<=Stages; Stage++)
00201         TRACEUSER( "Alex", _T("%d=%5f "),Stage,Coefficient[Stage]);
00202     TRACEUSER( "Alex", _T("\n"));   
00203 #endif
00204 
00205     if (!(LUT = new BfxALULUT)) return FALSE;
00206     if (!(LUT2 = new BfxALULUT))
00207     {
00208         delete LUT;
00209         return FALSE;
00210     }
00211 
00212     if (!(Temp = ALU->NewBitmap(Destination)))
00213     {
00214         delete LUT;
00215         delete LUT2;
00216         return FALSE;
00217     }
00218                  
00219     if (!(ALU->SetA(Temp) &&
00220           ALU->ZeroA() &&
00221           ALU->SetA(Destination) &&
00222           ALU->ZeroA()))
00223     {
00224         delete LUT;
00225         delete LUT2;
00226         delete Temp;
00227         return FALSE;
00228     }
00229 
00230 
00231     // Initialise the fixed resolution parameters
00232     // realDest = mDest.Dest + cDest;
00233 
00234     Stage=Stages;
00235 
00236     if (Coefficient[Stage]>=0)
00237     {
00238         mAdd = Coefficient[Stage];
00239         cAdd = 0;
00240         if (!(ALU->SetB(Source) &&
00241           ALU->PlotB()
00242            ))
00243         {
00244             delete LUT;
00245             delete LUT2;
00246             delete Temp;
00247             return FALSE;
00248         }
00249         CurrentZero=0;
00250         CurrentOne=255;
00251 
00252 #if DEBUGSILT
00253         for (v=0; v<TestSize; v++)
00254         {
00255             RealVars[v]=RealVars[v]*Coefficient[Stage];
00256             ScaleVars[v]=ScaleVars[v];
00257         }
00258         for (v=0; v<=255; v++)
00259         {
00260             DestByte[v]=TestByte[v];
00261         }
00262 #endif
00263         
00264     }
00265     else
00266     {
00267         mAdd = -Coefficient[Stage];
00268         cAdd = -mAdd;
00269         if (!(ALU->SetB(Source) &&
00270           LUT->LinearABK(0,-1,1) &&
00271           ALU->PlotBLUT(LUT)
00272            ))
00273         {
00274             delete LUT;
00275             delete LUT2;
00276             delete Temp;
00277             return FALSE;
00278         }
00279         CurrentZero=255;
00280         CurrentOne=1;
00281 
00282 #if DEBUGSILT
00283         for (v=0; v<TestSize; v++)
00284         {
00285             RealVars[v]=RealVars[v]*Coefficient[Stage];
00286             ScaleVars[v]=1.0-ScaleVars[v];
00287         }
00288         for (v=0; v<=255; v++)
00289         {
00290             DestByte[v]=LUT->GetLUT(0,TestByte[v]);
00291         }
00292 #endif
00293     
00294     }
00295 
00296     mDest=mAdd;
00297     cDest=cAdd;
00298 
00299 #if DEBUGSILT
00300     TRACEUSER( "Alex", _T("Stage %d "),Stage);
00301     for (v=0; v<TestSize; v++)
00302     {
00303         TRACEUSER( "Alex", _T("%5f|%5f|%5f "),RealVars[v],ScaleVars[v]*mDest+cDest,ScaleVars[v]);
00304     }
00305     TRACEUSER( "Alex", _T(" .. %5f,%5f,%5f |  %5f,%5f\n"),0.0,0.0,0.0,mDest,cDest);
00306 
00307     TRACEUSER( "Alex", _T("          "));
00308     for (v=0; v<=10; v++) TRACEUSER( "Alex", _T("%2x~%2x "),v,DestByte[v]);
00309     for (v=245; v<=255; v++) TRACEUSER( "Alex", _T("%2x~%2x "),v,DestByte[v]);
00310     TRACEUSER( "Alex", _T("\n"));
00311 #endif
00312 
00313     if (!(LUT2->LinearABK(2.0,-0.5,0)))
00314     {
00315         delete LUT;
00316         delete LUT2;
00317         delete Temp;
00318         return FALSE;
00319     }
00320 
00321     for (Stage = Stages-1; Stage>=0; Stage--)
00322     {
00323 #if 1
00324         if (!(
00325             ALU->SetA(Temp) &&
00326 
00327 /*
00328             ALU->SetB(Destination) &&
00329             ALU->PlotB() &&
00330 
00331             ALU->SetA(Destination) &&
00332             ALU->SetB(Temp) &&
00333             ALU->PlotB() &&
00334 */
00335             ALU->ZeroA() &&
00336             
00337 //          ALU->SetB(Destination) &&
00338 //          ALU->AddKAB(0x80) &&
00339 
00340             ALU->SetB(Destination,0,1) &&
00341             ALU->AddKAB(0x20) &&    
00342 
00343             ALU->SetB(Destination,0,-1) &&
00344             ALU->AddKAB(0x20) &&    
00345         
00346             ALU->SetB(Destination,1,0) &&
00347             ALU->AddKAB(0x20) &&    
00348         
00349             ALU->SetB(Destination,-1,0) &&
00350             ALU->AddKAB(0x20) &&
00351 
00352             ALU->SetB(Destination,1,1) &&
00353             ALU->AddKAB(0x10) &&    
00354         
00355             ALU->SetB(Destination,-1,1) &&
00356             ALU->AddKAB(0x10) &&    
00357         
00358             ALU->SetB(Destination,1,-1) &&
00359             ALU->AddKAB(0x10) &&    
00360         
00361             ALU->SetB(Destination,-1,-1) &&
00362             ALU->AddKAB(0x10) &&
00363 
00364             ALU->SetB(Destination) &&
00365             ALU->PlotBLUT(LUT2) &&
00366 
00367 
00368             ALU->SetA(Destination) &&
00369             ALU->SetB(Temp) &&
00370             ALU->PlotB() &&
00371             
00372             TRUE))
00373         {
00374             delete LUT;
00375             delete LUT2;
00376             delete Temp;
00377             return FALSE;
00378         }
00379 #endif      
00380         mAdd = 1;
00381         cAdd = 0;
00382 
00383         mCurrent = mDest;
00384         cCurrent = cDest;
00385         AddZero=0;
00386         AddOne=255;
00387 
00388         // Calculate cDest and mDest in the worse case situation. This finds the maximum range that an ouput
00389         // pixel may lie in (i.e. from cDest .. cDest+mDest).
00390 
00391         /*  Here's the maths:
00392                                                                            
00393             We wish to represent x (a set which may have arbitrary magnitude) as x' where 0<=x'<=1 and two
00394             reals cx, mx (mx>0) so
00395                      1
00396                 x' = __ [ x - cx]                x = mx.x' + cx              (1)
00397                      mx
00398 
00399             We thus chose
00400                 cx = min [x];                    mx = max[x] - min[x] > 0    (2)
00401 
00402             Now let us assume we have other similarly represented sets y, and z, where y is known, and
00403             z is unknown (as yet) but
00404                 
00405                 z = alpha . x + beta . y         (wouldn't this be a lot easier with mathgreek?)
00406 
00407             We know y', cy, my obviously, but we want z', mz' and cz', and more importantly how to do
00408             the addition in the dash ("'") transformed space.
00409 
00410             Let us consider:
00411                 z= (alpha.mx)x' + (beta.my)y' + (cx.alpha) + (cy.beta)       (3)
00412 
00413             To find cz, mz we need to consider the extremites of the range of z as in (2)
00414 
00415             
00416                          |             cz               |              mz            
00417             -------------|------------------------------|----------------------------
00418                          |                              |                            
00419             alpha>=0     | cx.alpha + cy.beta           |  (alpha) mx + (beta) my                         
00420             beta>=0      |                              |                            
00421                          |                              |                            
00422             -------------|------------------------------|----------------------------
00423                          |                              |                            
00424             alpha<0      | cx.alpha + cy.beta           |  (-alpha) mx + (beta) my                    
00425             beta>=0      |   + alpha.mx                 |                            
00426                          |                              |                            
00427             -------------|------------------------------|----------------------------
00428                          |                              |                            
00429             alpha<0      | cx.alpha + cy.beta           |  (-alpha) mx + (-beta) my                          
00430             beta<0       |   + alpha.mx + beta.my       |                            
00431                          |                              |                            
00432             -------------|------------------------------|----------------------------
00433                          |                              |                            
00434             alpha>=0     | cx.alpha + cy.beta           |  (alpha) mx + (-beta) my                          
00435             beta<0       |   + beta.my                  |                            
00436                          |                              |                            
00437             -------------|------------------------------|----------------------------
00438             
00439 
00440         Note that in our current use alpha is always 1 which simplifies the equations and
00441         means we only need to consider two case. Beta corresponds to Coefficient[stage].
00442 
00443         Note we can actually use *any* valid value of cz, mz. The values above are those
00444         guaranteed to give the smallest output range which includes all possibilities (i.e.
00445         all combinations of values from the input domains).
00446 
00447         The *full* range isn't really very useful. Of course there are going to be some pixels which will
00448         clip. Take (for example) the case of a sharpen on a full black to full white edge. Allowing full range
00449         through all the time with our fixed resolution of 255 sampling points will reduce the apparent bpp
00450         for solid colour areas (which are unaffected by the unit gain SILTs we are considering here). Thus
00451         we also work out the range of values obtainable in a sitatuion where x=y.
00452 
00453         We do this by maintaining two BYTE values, CurrentZero and CurrentOne (the top & bottom of the range).
00454         These are what bytes areas of solid black and white would be represented by in the incoming bitmap.
00455         These come straight out of the LUT calculations. AddZero & AddOne do the same for the incoming
00456         bitmap.
00457 
00458 
00459         The output range will run between two numbers:
00460             LimitZ = ((CurrentZ * mx) + cx) * alpha + ((AddZ * my) + cy) * beta
00461         where Z is "Zero" or "One". But is LimitZero < LimitOne or vice-versa?
00462 
00463         LimitOne-LimitZero = (CurrentOne-CurrentZero)*mx*alpha+(AddOne-AddZero)*my*beta
00464 
00465 
00466         In order to formulate z', we note
00467 
00468                      1
00469                 x' = __ [ z - cz]                                            (4)
00470                      mz
00471 
00472         And substitute (3) to give
00473 
00474                      alpha.mx     beta.my     cx . alpha + cy.beta - cz
00475                 z' = -------- x + ------- y + -------------------------      (4)
00476                         mz          mz                   mz
00477                     |________|    |______|    |_______________________|
00478                        PropA        PropB               Offset
00479 
00480         */
00481 
00482         if (Coefficient[Stage]>=0) // beta, alpha is 1
00483         {
00484             cDest = cCurrent + cAdd * Coefficient[Stage];
00485             mDest = mCurrent + mAdd * Coefficient[Stage];
00486         }
00487         else
00488         {
00489             cDest = cCurrent + (cAdd+mAdd) * Coefficient[Stage];
00490             mDest = mCurrent - mAdd * Coefficient[Stage];
00491         }
00492 
00493         double mDestIso;
00494         double cDestIso;
00495         double LimitZero;
00496         double LimitOne;
00497 
00498 
00499         // The *full* range isn't really very useful. Of course there are going to be some pixels which will
00500         // clip. Take (for example) the case of a sharpen on a full black to full white edge. Allowing full range
00501         // through all the time with our fixed resolution of 255 sampling points will reduce the apparent bpp
00502         // for solid colour areas (which are unaffected by the unit gain SILTs we are considering here). Thus
00503         // we also work out the range of values obtainable in a sitatuion where x=y.
00504 
00505         LimitZero=((((double)CurrentZero)/255.0*mCurrent)+cCurrent)+cAdd*Coefficient[Stage];
00506         LimitOne=((((double)CurrentOne)/255.0*mCurrent)+cCurrent)+((1.0*mAdd)+cAdd)*Coefficient[Stage];
00507         if (LimitOne>LimitZero)
00508         {
00509             cDestIso=LimitZero;
00510             mDestIso=LimitOne-LimitZero;
00511         }
00512         else
00513         {
00514             cDestIso=LimitOne;
00515             mDestIso=LimitZero-LimitOne;
00516         }
00517             
00518 
00519         // Now bodge the ranges together - note this isn't really a bodge, just that it should be calculated
00520         // accoridng to the dynamics of the image (complicated).
00521         //
00522         // Note the two forms of errors:
00523         // * If we use too much 'full range' stuff we will introduce errors at higher and higher bits in the
00524         //   image. This occurs because when the 0..1 range is compressed, 2 grey levels become equal at 8bpp.
00525         //   If we then subtract 0.1 x (original) which should still give an increasing image, if the rounding
00526         //   turns bad, we get a downward step not an upward step.
00527         //
00528         // * If we use too little 'full range' stuff, we will not see details near the full range which are
00529         //   brought out by the processing.
00530         //
00531         // Note always mDest=>mDestIso, cDest<=cDestIso, & cDest<=cDestIso<=cDestIso+mDestIso<=cDest+mDest
00532         //
00533         // The algorithm currently used is to chose an interpolation factor depending on the magnitude of
00534         // mDest compared to mDestIso, and interpolate between two range limited versions.
00535         //
00536         // STOP PRESS: Currently we're just using the IsoRange. Methinks I'm going to have to resort to the
00537         // mixture for different FIRs
00538 #if 0
00539         const double HighestIsoRange =9999.0;
00540         const double HighestRange = 4.0;
00541         double interp;
00542 
00543         interp = 0.75 + 0.25 * (mDestIso/mDest);
00544         // Limit the two ranges
00545 
00546         if (mDest<0.5/255.0) mDest = 0.5/255.0;
00547         if (mDestIso<0.5/255.0) mDestIso = 0.5/255.0;
00548 
00549         if (mDestIso>HighestIsoRange)
00550         {
00551             cDestIso+=(mDestIso-HighestIsoRange)/2.0;
00552             mDestIso=HighestIsoRange;
00553         }
00554 
00555         if (mDest>HighestRange)
00556         {
00557             cDest+=(mDest-HighestRange)/2.0;
00558             mDest=HighestRange;
00559         }
00560 
00561         mDest = (1-interp) * mDest + interp * mDestIso;
00562         cDest = (1-interp) * cDest + interp * cDestIso;
00563 #endif
00564 
00565 mDest=mDestIso;
00566 cDest=cDestIso;
00567 
00568         // To reduce the possiblity of rounding errors, we ensure that 0 corresponds to an integer grey level
00569         // and that the gamut is an integer number of grey levels wide. This process should be guaranteed to
00570         // ensure that black stays as black, and white stays as white.
00571         double oldcDest = cDest;
00572         cDest=(floor(cDest * 255.0))/255.0;
00573         mDest = (ceil((oldcDest + mDest)*255.0))/255.0 - cDest;
00574                
00575         double PropA;
00576         double PropB;
00577         double Offset;
00578 
00579 
00580         PropA = mCurrent / mDest;
00581         PropB = Coefficient[Stage] * mAdd / mDest;  
00582         Offset = (cCurrent+cAdd * Coefficient[Stage]-cDest)/ mDest;
00583     
00584 #if DEBUGSILT
00585         for (v=0; v<TestSize; v++)
00586         {
00587             RealVars[v]+=Coefficient[Stage]*TestVars[v];
00588             ScaleVars[v]=PropA*ScaleVars[v]+PropB*TestVars[v]+Offset;
00589         }
00590 #endif
00591         
00592         if (!(LUT->LinearABK(PropA, PropB, Offset) &&
00593              ALU->SetA(Destination) &&
00594              ALU->SetB(Source) &&
00595              ALU->PlotBLUT(LUT) &&
00596              TRUE))
00597         {
00598             delete LUT;
00599             delete LUT2;
00600             delete Temp;
00601             return FALSE;
00602         }
00603 
00604         CurrentZero=LUT->GetLUT(CurrentZero,0);
00605         CurrentOne=LUT->GetLUT(CurrentOne,255);
00606 
00607 #if DEBUGSILT
00608         for (v=0; v<=255; v++)
00609         {
00610             DestByte[v]=LUT->GetLUT(DestByte[v],TestByte[v]);
00611         }
00612 
00613 
00614         TRACEUSER( "Alex", _T("Stage %d "),Stage);
00615         for (v=0; v<TestSize; v++)
00616         {
00617             TRACEUSER( "Alex", _T("%5f|%5f|%5f "),RealVars[v],ScaleVars[v]*mDest+cDest,ScaleVars[v]);
00618         }
00619         TRACEUSER( "Alex", _T(" .. %5f,%5f,%5f |  %5f,%5f\n"),PropA,PropB,Offset,mDest,cDest);
00620 
00621         TRACEUSER( "Alex", _T("          "));
00622         for (v=0; v<=10; v++) TRACEUSER( "Alex", _T("%2x~%2x "),v,DestByte[v]);
00623         for (v=245; v<=255; v++) TRACEUSER( "Alex", _T("%2x~%2x "),v,DestByte[v]);
00624         TRACEUSER( "Alex", _T("\n"));
00625 #endif
00626 
00627 
00628     }
00629 
00630     if (!(LUT->LinearABK(mDest, 0, cDest) // Accumulator already set up
00631          && ALU->PlotBLUT(LUT)))
00632     {
00633         delete LUT;
00634         delete LUT2;
00635         delete Temp;
00636         return FALSE;
00637     }
00638 
00639 #if DEBUGSILT
00640     for (v=0; v<=255; v++)
00641     {
00642         DestByte[v]=LUT->GetLUT(DestByte[v],TestByte[v]);
00643     }
00644 
00645     TRACEUSER( "Alex", _T("End       "));
00646     for (v=0; v<=10; v++) TRACEUSER( "Alex", _T("%2x~%2x "),v,DestByte[v]);
00647     for (v=245; v<=255; v++) TRACEUSER( "Alex", _T("%2x~%2x "),v,DestByte[v]);
00648     TRACEUSER( "Alex", _T("\n"));
00649 #endif
00650 
00651     delete LUT;
00652     delete LUT2;
00653     delete Temp;
00654     return(TRUE);
00655         
00656 }


The documentation for this class was generated from the following files:
Generated on Sat Nov 10 03:51:15 2007 for Camelot by  doxygen 1.4.4